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Vector spatial solitons influenced by magneto-optic effects in cascadable nonlinear media
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The theory of vector spatial solitons in cascadable nonlinear media, bounded by magneto-optic material, is
established. The main work is preceded by a discussion of the fundamental-harmonic wave phenomenon and
four coupled equations for the system are established. A number of simulations are provided that illustrate both
the vector nature of a quadratically nonlinear film, bounded by magneto-optic media and the crucial role of the
magnetic field. It is demonstrated that the powerful polarization control exercised by the magnetic field
suggests a number of interesting applicatig®i063-651X97)10901-1

PACS numbgs): 42.65.Tg, 02.60.Lj, 42.60.Jf, 42.65.Jx

I. INTRODUCTION dE )
57 =~ TiE2,Ele 4, (2a)
Second-order nonlinearity is, traditionally, associated
with second-harmonic generatiph], and was not, until re- dE
cently, seen as a source of intensity-dependent phenomena. 2o _ —iT,E2e'2k7, (2b)

The rejection of second-order materials as envelope, or spa- dz

tial, soliton hosts appears to have been centered upon a linea _ LY _ @ .
phase-matching argument. This view has now change_t?reagég(k";/iznz_ﬂ’)zﬂ (iwfﬁéﬁ;’eilgé:éicr:‘i‘gn afcg)rfa')r'he

2-12, and the back-mixing, or down-mixing, which is . . . :
E:alled] cascading, of the se(?ond harmonic W?th the fundagmp“tUdeSE“’(z)’ E;,(2) contain possible nonlinear phases

mental wave to create usable third-order nonlinearity in th ¢.(2) and ¢,,(2), respectively. The amplitudes will there-

I = _i¢w = _id’Zw
form of an intensity-dependent refractive index, is openin%re be written asg,=F,e and Ez,=F5.e '

up exciting prospectsl3]. Featuring strongly among these%here the dependence upans now implicit. From these

are spatial soliton interactiofi¢4—16. Such excitations de- definitions, it is not difficult to establish the following equa-

pend upon the competing roles of diffraction and nonlinear—tlons:

ity and have already received some attention. The interaction d2F do, |2 1 [dF. \2

between fundamental waves of angular frequengywith —‘”—2(—“’) o — <—"’) +I,T,F3

linear wave numbek,, and harmonic waves, with angular dz* dz F, | dz

frequency 2 and linear wave numbek,,, can be under- dé

stood in terms of a balance between nonlinear and linear + Ak dzw>F“’:O' (339

phase mismatches. It is worthwhile to highlight this prin-
ciple, using scalar waves for clarity of argument, therefore,
before going on to investigate the more complex situation
involving vector waves and magnetooptic effects.

Suppose that the scalar electric fields associated with
and 2 are E, and E,,, respectively; then the frequency- With similar ones being obtainable féf,, and ¢,,. Equa-
domain amplitudes of the second-order nonlinear polarizations (3) can now be made to reveal how the balance be-
tions[13], in a material characterized by a susceptibility ten-tween thew and 2» waves is achieved. If the boundary con-
SOin(jzk). are dition is E,,(0)=0, E_(0)#0, then @F,/dz),=0 and

(d¢,/d2)y=0, so that Eq(3b) gives

2 dé. | (dF, F °4, Ade“’—o 3b
az |\ dz | TFe gz 2k45z =0 @D

Pl = 3x?(0.0,— w)E,EZ, (1a) ,
dg,| , Ak|_ Ak FE(0) .
PN =3 (0,20, — w)Ey, EX, (1b) iz 2T 2 P @
P[\'ZLCO):%X@)(zw;w,w)EwEw, (1  so that, for perfect linear phase matching, i&k=0, F,

=SeCh6/F1FZZ), ¢0):7T/4' sz: \/lerl tanh(\/rlrzz),
go IS not included in these formulas, where theterm Py, ¢,,=0, and the interaction is not periodic. This is the classic
cannot act as a source term to generate waves, leaving ond@se in which the conversion af to 2w is 100%, and con-
P[“wL) and P(NZED) to act as drivers for interacting waves. Given version back tay does not occur. The point to be made here
that this is the case, th@w,2w) interaction process for the is that there is neteady-stateombination of(w,2w) waves.
scalar cw waves under consideration here, that are propagat- For cw waves, a second type of boundary condition can
ing along thez axis, is governed by the well-known equa- be created, however, by makitg,#0 andE,,#0, initially,
tions [1] i.e., E, (0)=F,(0)e % and E,,(0)=F,,(0)e ' #2.(0),
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In this case, a balance between thand 20 waves can be Il. VECTOR AND MAGNETO-OPTIC FORMULATION
imposed by demanding thatF,/dz=0 and dF,,/dz=0;
ie., if F,(2=F,(0) andF,(z)=F,,(0) at z=0, then
they will alwaysremainat that value. The conditions for this
interesting stationary state are

The dielectric medium is assumed to be dominated by
second-order nonlinear polarizatiofS"(w) and PN-(2w),
and that vector electric fields E(w)=(Ei(w),Ey(w)),
E(2w)=(Ex(2w),E,(2w)) are being propagated along the
axis. The fundamental wave has an angular frequenand

2¢,(2) — ¢2,(2) = Akz, (53 the harmonic wave has an angular frequeney Bhe pres-
ence oflinear magneto-optic materidll7] creates, in addi-
deb, F2(0) tion, the polarization®(w) andPM (2w). If ¢ is the velocity

(5b) if light in a vacuum, andh(w) andn(2w) are thezero mag-

=T, ,
dz F2,(0) netic field, zero nonlinearitand linear refractive indices at
the respectivas and 2v frequencies, then the general wave
Ak*\(Ak)2+8I'T',F2(0) equations are
F2,(0)= : (50
ar, o2
V2E(w)—V(V-E(w))+ n n?(w)E(w)
Actually, these equations can also be found in the paper by
Schiek[8], but one difference is that he worked entirely in 2 L w\? "
the frequency domain. Another difference is that Schiek dis- g Plo)tlg (w)=0, (63
cusses the problem in terms sdfippressinghe 2w wave, by
using the boundary condition. While it is true that the bound- )2
ary condition does eliminate the generationeef:2w it is, V2E(2w) = V(V-E(20))+ _‘”) 202 )E(2
nevertheless, the case thadth the » and 20 waves are still (20) ( (20)) c) " (20)B(20)
present in the interaction. If the nonlinear phase shifts are 202 202
defined asﬂwfd¢w/dz and B,,=d¢,,/dz, then_ .Eq.(5a) i _“’) PNL(260) + _‘”) PM(20)=0. (6b)
shows that this second type of boundary condition creates a c c

stationary state whenever the nonlinear phase mismatch

AB=B,,— 28, exactly balancesthe linear phase mismatch The x components of the nonlinear polarizations are
Ak=k,,— 2k, . A type-1 boundary condition is responsible

for se_cond-harm(_)nic generation, thergfore, and type 2 is re- p)’:“-(a,)z %[2K1E§(w)Ex(2w)—2K2E§(w)Ey(Zw)
sponsible for stationary state propagation. In other words, the

waves in the two types of initial conditions, start differently — 2B (0)Ex(20) — 2K, EJ (0)Ey(20)],
and end up differently, in the cw case. The situation changes (78
for beams of finite size. For the type-1 boundary condition,
which is E, (0)=0 andE_(0)#0, two long-term behaviors
can be easily seen. E _(0) is below some threshold, then
E,.(2) is still generated, but botk,,,) andE,,(z) radiate
away, due to diffraction. If£_(0) is above some threshold .
value, however, the energy switches back and forth betweef{€ré the hexagonal and trigonal systems are covered and,
the fundamental and the harmonic a few times but eventuall _grefore, the crystal classes@n2, 32, and 8. The defi-
energy is distributed betweenand 2» to form a stationary, Nitions of xy and «, are

spatial solitonlike beam. This is a balanced state. Of course,

E,,(0) can always be selected to prevent even initial relax- 2K1= X @3 — ©,20) = = x\2\(0; — ©,20)

ations shed_ding u_nwanted energy, and a stationa_ry state can — v (20 9@ (2 8

be formed immediately. When this happens, again, it is not Xoood 200, 0) X205 0,0), (83

that 2w is suppressed, but that a combireg2w) solitonlike

PN (20) =3[ k1EX(@) = k1EY(@) = 2kEx (@) Ey()],
(7b)

beam is formed. In other words, it is the unwanted adjust- 2Ky= — Xl @1~ ©,20) = — Y\ (0 — ©,20)
ments associated with usirig,(0)#0, E,,(0)=0 as initial @
conditions, or not selecting,(0)#0, E,,(0)#0 to give a =~ Xy 20, 0,0). (8b)

stationary state, immediately, that is avoided when Schiek

refers to suppression. The above discussion is not comingimilar expressions for thg components ofPN'(w) and
from the same direction as the work of Schigl, but it  PN'(2w) can also be found.

should be recognized that his equations, in the end, contain The system under investigation is shown in Fig. 1, and
the samemathematical content. Having now established theconsists of a film of quadratically nonlinear material which is
basics in terms of and 2v scalar waves that are balanced to bounded by a linear, magneto-optic, semi-infinite, cladding
form stationary solitonlike states, by compensate@ctly and substrate. Guide confinement is in thelirection and
for any linear phase mismatch with aonlinear phase mis- self-focusing, leading to spatial solitonlike stationary states,
match, it is important to consider vector solitons. This isis along thex direction. The cladding and substrate are mag-
done in this paper with an added effect gained from using aetized, with an external magnetic field, along thaxis. In
waveguide that has a linear magnetooptic cladding and sulthis so-called longitudinal configuration the dielectric tensor
strate. of the cladding or substrate material[&8], for w,
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B HO re 2__ 1 =(T? 2_1"2
magnetized / (ry) S TAYZdy (ry)==rs,,
cladding
y=d
nonlinear film (I'ze)?= T(AZoyZay = =(I';")?=T3, (12)
=d H y
Y tized | °
magnetize on the grounds that the cross-sectional modal areas, pre-
substrate sented byAy?* and A2"?“, are very similar. The substitu-
tion of EqQ.(11) into Eq. (6a), for example, gives
P
zr 2iker A0 X —2—‘92F +T,, i —XF
y QQ?O | w” X (9 ax ay X
o
&
R w2
+ —) n2(w)—(k®)?|T ,AYF =0, (13
X c
FIG. 1. The waveguide structurél is the applied magnetic where
field needed to activate the magneto-optical material. Both the clad- 2, \_roNL M
ding and the substrate are semi-infinite. N (@) =[Py~ (0)+ Py (w)J/Ex(0) +e(w) (14
. 0 in which e(w)=n?%w), and it should be recalled thatw) is
y _ e(w) ~iQ(w)e(w) the refractive index in the absence of both magnetic field and
eM(w)=|1Q(w)e(w) g(w) O |, (9 nonlinearity. Equatior{13) can be treated by the method of
0 0 e(w) separation, which involves splitting, through a separation

constanty into the two forms
and sM(Zw) has the same formQ(w) is a frequency-
dependent magneto-optic coefficient which is induced by the k® gF 4 1 9°F 2 L2
applied magnetic field. |: 9z |:X IX2 ) —(k)71=0,
The polarization components, arising because of the (153
magneto-optic nature of the substrate or cladding|&rg

20 2
J AX w 2 o2 )
PY(0)==iQ(w)s(w)Ey(w), 2 Tl 5] @)= (kK)?AY=0. (15D
P (0)=iQ(w)e(w)Ex(w), (10@  The second equation is_the nonlinear eigenmode equation. It
will be used to generatek(’)?— (k )2, which is needed for
PM(20)=~iQ(20)e(20)E,(2w), Eqg. (153. In the absence of nonlinearity and magnetic field,

ky=Kky, hence

PM(2w)=1Q(2w)e(2w)E(2w), (10b 2 _ A®)2d
y FL(k0)— (ke)2] = _Zf[nx(w) e(w)](A)"dy

w 2 X
where it should be emphasized that the magneto-optic cou- [(AO)dy
pling parameter does, in principle, depend upon frequency. w\?2 e
For many materials, the difference betwe@fw) andQ(2w) = (E) [kiFx fx—koFx fy
will be slight, however. In the kind of waveguide that is
typical for integrated optics the guiding is weak so that _K_ZF;fX_K_lF’y*fy]
V(V-E(w))=0, V(V-E(2w))~0. )
Suppose now thaverage linear gwdmg(zero magnetic 2o _opay, | O ——————
field) wave numbers k®=/(k{)?+(k{)%2 and k2 Xl ]Z_'(E) Qlw)e(w)Fy
=(k 2“‘)2+(k2 ’[2  are mtroduced where k® (16)
#w/C\/s(w) and k??+# wlc\e(2w). The field components
Ey y(w) andE, ,(2w) can then be expressed in the following, whereAy=A¢, and
separable, form:
y IRy TAJUAY) My
Exy(@) =Ty A (Y)Fyy(x,2)e"" (119 r1=la, J(A%)2dy k1=l J(A%)Zdy "1

) l_‘2 Aw 2A2wd FZ Aw 2A2wd
Euy(20)=TZ5AZ (Y (x, 262, (11h N_ﬂ—y oo Lo I Yo

where the normalization constants are (173
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FIG. 2. The potential functioW(p, ,q,) for u,=0 andv=0, (a)
#1=0. (b) py=1.
T [ARAyAZdy
K= T a2on24v
2 Ty, [(ALY)?dy
JAZO(AD)?dy
oo . K
J(A)*dy

FAZ2(A2)2dy
J(AY)Zdy

K2=1 24

=15, 2, (170

 [Q(@)e(w)(A)dy
Qw)e(w)= = xazg

(179
JQ(2w)e(2w)(A2?)2dy
J(AZ®)%dy

Q2w)e(2w)=

Equation(159 becomes, therefore,

ilew IF aZFX »\2 )2
2ik® ——+ — 7 +1(K) "= (k*)"]Fy
) — 2 _
_i<E) Qw)e(w)Fy+| = [kiFy fx— koFx fy
—KgFh =g E T, ]l 22=, (19)

If we now make the further transformations
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(a)
(b)
X
©) °:j N\ P
S0

FIG. 3. Solutionsp, (dashedlandq, (solid) as a function ok.
(a) Example of a spuriougnonsensible solution. (b) Symmetric
solitonlike solution.(c) Multipeaked solitonlike solutionu;=1.0,
u>=0, andv=0.
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FIG. 4. Total energy o€ombinedTE and TM modes as a func-

tion of (1/v) w;=2 and u,=0. The solutions associated with

branches 1, 2, and 3 are also shown.
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FIG. 5. Total energy otombinedTE and TM modes as a func- FIG. 6. Total energy of combined TE and TM modes as a func-

tion of u,. =2 andv=0. The mode shapes for branches 14 arelion of u for a number of stationary states with=—2 and»=0.
also shown.
a)) 2 Vyy

2k® B, Wy (E 2k“ B, —Y

Cc

)2 nyy
Wx . ) Wy . ) ( Y
F,=— expi Z), F,=— exp Z), 19@
=5 (i By Y p(i By

and the definitions

fy=VyexniB,z), f,=V,expip,2), (19b)

(k)%= (ky™)? 0|2 Q(w)e(w)
where 8; and 8, are nonlinear phase changes. Only soliton-  vq,= A3 ) 1= (E) W
like solutions are to be investigated here, so the choice ! !
k2@ —2k®+B,—2B,=0 is made. After making3,z—z and

V2k®B1x—Xx, the following set of four coupled equations _[2w ? Q(2w)e(2w) _ kZ® _ @

. QZ_ P ’ a= ! B_ 2 ’
emerge: c 2k B4 2k 1
Wy PW where; , are birefringence parameters, aRd, are magne-

| +WZ_"_Vlwx_Wx_inWy'i-K—l(W:VX_W*Vy)

y tooptic parameters.
o The coupled equation®0) are not completely integrable
— k(W Vy+ Wy V,) =0, (208 but they do have, at least, three constants of motion. These

are the following:

0z

COW,  dPW, , _ Effective masgtotal energy
i a—zy+ —&Xzy— w1 Wy — Wy +1Q Wi+ i W Vy— WE V)
_ 1
— k(W3 Vit WS V) =0, (20D M=—\/? f [3IWil 2+ a Vy |2+ 3| Wy| 2+ a| V| 2]d .
v
AV 3PV, _ S (219
2iad —+ ——5 +vVy—aBV,—iQ,V + Kl(WX—Wy)
9z X Momentum
— 2Kk W, W, =0, (200
b i j W AW W awx+ Vy . IVx
Ny, IV _ === x o Wi —— taVy aVy ——
Zia =Lt = vV~ BV IQaV K (WE— W) V2w X X ox 28
__ WG W, vy L Vy
—2K1WXWy= 0. (20d) +Wy &—X—VV; (9—+avy W_ aVy 3_ dx

Note that equation&l9) also use the transformations (21b
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FIG. 8. Collision between two, initially, pure, in-phase, TE soli-
tons with equal amplitudes, for a 32 crystal cla&. W, compo-
nent. (b) V, component. ThéV, andV, components are always

zero, everywhere.

FIG. 7. Evolution from the TE input statev,=V,=0 and
W, =V, =3 seck(x/2). (a) 6m2/3m crystal class withx;=0 and
Kk,=1, (b) 32 crystal class with¢;=1 and,=0.

Hamiltonian
2\Y2 oW, |2 [aWy|? 1 [aV|? 1]aV,|? v v af
_ y X y 2 2 2 2 2 2 2 2 2
=|— — + = |— += | - + - — + = + + + —
H 7T> f X X 2 | ax 2 | ax V1|Wx| V1|Wy| 2 |Vx| 2 |Vy| |Wx| |Wy| 2 |Vx|

apf ] i K1
+— IVy[2=iQ (W Wy — Wi W) — 5 QaVVy = Vi Vy) = — (W 2Vt WEVE — 2Wx WV — W3 2V, — Wa VS
K
—2W, Wy V5 ) — ?2 (W 2V + W2V — 2W5 Wi Vo — Wi 2V — WEVE —2Wy W, V5 ) | (219

and D, , are the usual 22 determinants. The substitution of
V, andV, into Egs.(209 and(20b) gives coupled equations

Ill. CASCADED LIMIT
for W, andW, . For example,

In the cascaded limiV, ,/dz and 3V, ,/9x* are negli-

gible, so Eqs(200¢ and (20d) become
Wy °W, ) )
—+ + 20W, + 2| W, | *W, — 2W3 Wy

(@fp=v2)VytiQaVy= k(W= WJ) = 21 Wy Wy Fra .
2 2 2 2
—1QuVy (@Bt 1)V = o W2 W2) — 21, W, W, + 249 | Wy| "W+ 2105 (WIWG — Wy | “Wy + 2| Wi “Wy)
, _ — Q1 Wy —iQa(WEWy — |W,|2W, — 2| W, ?W,) =0,
which have the solutions 22)
D=a?p?~v5-Q3, wherev=1,/2,

V,=D,/D, V,=D,/D,
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FIG. 10. Contour plot showing the cross section of the evolution
of the interaction between an, initiallgcalar TE soliton and a

FIG. 9. Collapse distance, as a function of total energy for anPSeudoscalar soliton for a 32 crystal class.x;=1, x,=0,
interaction between two, initially, scalar solitons. The length curves Q1= Q2=0, andv;=,=0.
associated with the stable and unstable branches of the total energy

high harmonic

curves are indicated, together with the fundamental and harmonic K§+ K% K%- K% v .
wave content. D aB+ 5D V2 W, y— W, yexp(—iz).

(K2+ kD) af— (k2= k2)vy Stationary soliton solutions, in the form

#1 (K§+ K%)aﬂ+(Ki—K§)v2’ W,=(p,+ip;)expi2rz),
(23
Wy =(q, +iq;)expi2Az),
—2K1KoV>
M2 can now be looked for. Solution®3), when used in Eq.

:(K2+K2)a +(Kk5—K5) vy
itrapt k=K, (22, and the similar equation fow,, give four coupled,

ordinary, differential equations for the real and imaginary
2(k2+ k3)Q, parts of the TE and TM field component amplitudes.
(KE‘FK%)&’,B‘F(K%—K%)VZ_)Qz, The numerical analysis begins with a simpler case, for
which u,=0. For a pure TE soliton solutiop;=qg,=q;=0
and p,=p sechpx), where p?=2(\—v). This recovers the
and scalar case. Alsp,=q,=q;=0 andp;=p sechpx), where

(b)

20

FIG. 11. Evolution of the four
components of Fig. 10, showing
that the wave componer, is
generated, shortly after the beam
is launched(a) V, component(b)
W, component(c) V, component.
(d) Wy, component.x;=1, x,=0,
Q:=Q,=0, andv;=r,=0.

20
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cal simulations have to be generated. The Hamiltonian of the
coupled equationf24a and(24b) is

H=3(p?+q) — (p?+a?)+ v(p?—a?)+ 3(p?—q?)?
+ p1p2Q2+ 2 p2(p2— 92 piq; (25)

and the potential energy is

V(p;,q,)=—(p?+g?) + v(p?—a?) + 3(p?—q?)?

_ _ _ + w1 PP+ 25(PF—G7) PG - (26)
FIG. 12. Evolution of the interaction between two beams forced,

initially, to be at an angl# to each other. One beam sets out as aFigure 2 shows the forms of the potential functié(p, ,q;),
pure TE solitorfonly W, #0, V,#0] and the other beam sets out as for various values Ofiy, i1, andv. The case foju, = u,=0.0

a pseudoscalar solitdonly Wy #0, V,#0]. The crystal class is 32, gndy=0.0, is shown in Fig. @), in which it can be seen that
sox;=1 andx;=0. Als0 Q,=Q,=0 andy;=1,=0. the trajectory of a “particle” on the potential surface evolves

. o . . down a steep slope, and escapes to an infinitgj,aind p, .
p is the same as it is in the previous case. The solutiongy, sensible solution is possible, therefore, for this system.

however, have ar/2 phase shift with respeczt to each other. g, 1,=1.0, 4,=0, and»=0 [Fig. 2b)], however, sensible
By_the; same Ioglc_,q,=p sechpx), Vi"th_p :_2()‘+V) if solutions are likely to occur, since any point on the surface
Pr=Pi=¢i=0, ord;=p sechpx), if p,=p;=0,=0. that can evolve will remain at finitg, andg, values. Imme-

The above squt!ons are scalar, and cease to gxd@t#). diately, this kind of analysis shows that regular solutions are
The coupled equations wit,#0 havevectorsolutions, and  ,qgjhle forp, andq, . Regular solutions can also exist for

it can be assumed that the solutions are real, p;e=,q; =0 =1.0, and small values qf, and », since the potential is

. 1
always. For example, the coupled equations can be reducegyt mogified so much that the dippediike structure vanishes.
via the transformations\\x—x, vIA\—v, (1\\)p,—p;, Equations(24) are ordinary differential equations and can

and (1W\)g,—q;, to be solved, numerically, with a technique known asgheot-

. P 2 ing method 19]. Solutions may appear during the numerical
Pr=2(1=v)P+2(p; —Gr)Pr + 2010 Py analysis, which do not make sense, but these can be rejected

+2u,(3p2— ). =0, 24 by using an iterative process to obtain convergence to an
#2(3Pr a0 (243 acceptable soliton result. FiguréaB shows such a nonsen-
a.—2(1+ +2(02=02)q. + 2 w1 D2 sible solution, but, in the class of meaningful solutions, two
Ar=2(1+v)qr+2(d7 = Pr)dr +21aPrds types are obtained, namely symmetric, and antisymmetric.
—2u5(397—p?)p,=0, (24b  Figure 3b) shows stationary symmetric solutions for bgth

and g, . Clearly, bothp, and g, are solitonlike solutions
wherep, =d?p,/dx? andg,=d?q,/dx?. These equations are Other solitonlike solutions also exist, but these are multi-
integrable foru,=0 andu,=2, but, for other values, numeri- peaked, as shown in Fig(8. Thep, solution(dashed ling

FIG. 13. () V,, (b) W,, (¢
V,, and(d) Wy, components of the
scalar-pseudoscalar interaction
shown in Fig. 12. The peak of,
is located at the collision point is
clearly seen in this set of figures.
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is similar, in this case, to a fundamental soliton, except thatonstant, or modulated with some function. For example, a
there is a slight bump at the top. On the other hand,qthe modulation sitmx/2)/|sin(mx/2)| creates a periodic square
solution (solid line) has negative values, and is multipeakedfunction, which is perfectly possible from a technical point
when the absolute value of the field is used. It is interestingf view. The propagations will be allowed to proceed from

that many more stationary state solutions exist. z=0 to z=11 cm and the transverse computational window
The total energy of the two TE and TM modes, in theis —68 um=x<68 um.
cascaded limit, as it changes with the parametersu, and For a certain crystal symmetry group, in the absence of an

v, but with Q;=0 andQ,=0, will now be investigated. The applied magnetic field, only solitons with a particular polar-
total energy is defined asE=(2/\v)[[(VAp,)? ization state can be supported. For example;0, in a crys-

+ (W) 21 d(x/ \N)=(2Wv) f(pF+af)dx, and Fig. 4 (gl belonging to the M2, or 3m class. Pure TM(W, #0,
shows that the total energy of the combined TE and TMy () solitons can then propagate, while pure TE solitons
modes is a function of the different initial profiles used. The(WthO, V,#0) cannot. On the other hand, in a 32 class
parameters involved arg,=2 and u,=0. In Fig. 4 each cystal, x,=0. In this case, pure TE solitons can propagate,
number represents a typical curve for a particular solution tq)t then pure TM solitons cannot. In ackiss material, nei-
equations(25) which were found using thehooting tech- iner pure TE nor TM can propagate. In this case, a vector
nique[19]. Curves(1) and(2) coincide for larger and split  type of soliton, which is a mixture of TE and TM compo-
into two, as the birefringence parameter is reduced. The purgents, forms théntrinsic solution of the coupled equations.
TM mode, represented by cur¢), has more energy, forthe  Figyre 7 shows the propagation of a pure TE soliton in
same birefringence parameter, than the mode of c@¥e gifferent types of crystal. In the casg=0, the field ampli-
Figure 5 shows what happens when fheparameter is var- ,de is normalized with Ky, 1., kW, ,—W,, and
ied, for the single-peaked structure. Curygsand(2) are in KkVyy—Vyy- IN contrast, ifk,=0, the field is normalized
the same region, since they represent the same stationagyin 'Kl- ,,l’z 1,=0, Q;=Q,=0, andap=1 are used here,
profiles, except that the TE and TM modes have beerynq W, =V, =3 sech(x/2) and W,=V,=0 are used at the
swltched around. For branchéb and(2_), t_)ranch(l) has a input. Figures ) and 7b) show a pure TE soliton propa-
higher total energy tha(®). They do coincide, however, for gating in a 6n2/3m class crystal and 32 class crystal, respec-
a particular value ofu, when u, is about—0.035, but, as {jvely. For the reason mentioned above, solitons in Fig) 7
lug is increased, branchl) increases in total €nergy, start radiating and decay soon after they are launched. A
whereas branct?) decreases. Branché€3) and(4) of Fig. 5 gimilar situation arises for a pure TM soliton, but for this
behave similarly, where brancd) decreases in value, when solution, instead of decaying in ar®/3m crystal, it decays
the larger stationary solution is the TE mode, as with branch, 5 32 class crystal.
(_1). Branch(3) inc_reases in value, and the larger of the sta- Figure 8 shows a collision betweemijtially, two equal
tlonary' solutions is TM. Here branché8) and (4) do not  TE solitons in a 32 class crystal. Figure®8 8(b), 8(c), and
meet like (1) and (2). When x,=0, branches(3) and (4)  g(g) display in thew,, V,, W, andV, components, respec-
reduce to pure TM and TE solutions, respectively. Figure qive|y_ It is shown, in Figs. &) and &d) that no TM com-
shows the total-energy variations, verqus for the single-  ponent g, ,V,) is generated, in the collision. The collision
peaked structure. It also shows the asymmetric stationary nevertheless, inelastic, as the reduction in the oscillation
solutions, given by branchég) and (3). period, and the small amount of radiation, indicate. This in-
elastic property of the collision originates from the fact that
the coupled equation&20) do not have multisoliton solu-
tions.

It is important to study interaction lengths, so, for the

In Sec. lll, the four coupled equations given by E2Q) purpose of this calculation, the conceptamilapse lengths
were reduced to two, within the cascaded limit, and the scadsed. This is the distance through which the beams come to
lar and vector solitons were examined as functions,qf,, be overlapped by half their beam width. Using this defini-
and u,. Here some numerical computations of the fourtion, it can be seen in Fig. 9 that the collapse phenomenon is
coupled equations are presented. not as simple as it appears in Fig. 8. There are two branches

The numerical simulations have been carried out for &o the collapse distance—total energy curves corresponding
guadratically nonlinear material sandwiched between a semto stable and unstable states of the scalar soliton solution.
infinite, magneto-optic cladding and substrate. Since yttrium The stability of the scalar soliton solution of EqR0), is
iron garnet (YIG) is transparent for 1.1-1/m wave- discussed inl3]. One point that should be noted here, how-
lengths, this material is selected to illustrate the effects. It ieever, is that, if the growth rate of the unstable branch is very
a well-known magnetic material, backed by a mature techsmall, two solitons can collide, well before breakdown oc-
nology that has large enough off-diagonal elements in itsurs. In such a case, a collapse length can still be defined. As
dielectric tensor to produce easily measurable magneto-optitie total energy increases, the growth rate of the unstable
effects. A typical diffraction length i& ;=2.2 mm. Typical branch(lower branch in Fig. ®increases, until the solitons
beam widthsD,=8.5 um, and magneto-optic parameter lose their identity, before they meet each other. This is where
Q~10 *are also assumed. It is well-known that YIG can bethe lower branch of Fig. 9 stops. Its upper branch will go on
saturated with a magnetic field 1750 G so that may be increasing forever. If the growth rate of the unstable branch
assumed. Also, the nonlinear film thickness is the order of 2s still rather small, the soliton will, nevertheless, radiate en-
um. To strike a note of caution, in principl€) is a function  ergy, immediately after it is launched. When a soliton en-
of frequency, leading t@, and Q,, but it may also be a counters this radiation, it can “see” the existence of the

IV. NUMERICAL ANALYSIS OF THE FOUR
COUPLED EQUATIONS
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FIG. 15. Collapse distance for the interaction between an, ini-
tially, TE soliton and a pseudoscalar soliton, as a function of the
magnetoptic paramet&p,. Reversal of the applied magnetic field
occurs wherQ, changes sign.

One way to overcome this difficulty is to force the two
beams to collide, by giving them an initial angle. Then the
point where the generated, field reaches its maximum is
always the point where the two beams collide. Figure 12
shows an example of this forced collision. There are two
(6) beams, and the one on the left is a pure TE soliton with only
W, andV, components. The one on the right is a pseudos-
FIG. 14. Magneto-optic interaction of an, initially, TE soliton calar soliton, and has onwy andV, components. Initially,
and a pseudoscalar soliton f@;#0 andQ,=0. (8 Q;=0.2,(b)  they propagate at an angle to each other. Figurés133(d)
Q=-0.2. show itsV,, W, V,, W, components, respectively. Figure
13(a) shows theV, collision and Fig. 1&) shows the gen-
other soliton, and their interaction is then enhanced. Thigration ofV,, with the V, component being, initially, zero.
radiation must be responsible for the shorter collapse lengtAs the beams pass through each other, energy is fed to it
of the unstable solitons. For the 32 cldgs=0), a crystal from other components, and it reaches its peak in the vicinity
cannot only support a pure scalar TE solitod, #0, V,#0,  of the expected collision point, as shown in Fig(d3Fig-
W, =0, V,=0), it can also support a pseudoscalar solitonures 18b) and 13d) show theW, andW, components, and
(Wy=0, V,#0, W, #0, V,=0). If »=1,=0 andaB=1, this it can be seen that the two sets of beams do not actually

pseudoscalar soliton solution\¥,=V, =0 andW,=—-V,=  collide, but bounce off each other. In fact, each takes a slight
3 seclf(x/2). The pure scalar TE soliton, in this case, isshadow of its partner with it.
W, =V, =0, W, =V, =2 secl(x/2). The name “pseudosca- It is now an important question to see how the magnetic

lar” is clear when it is compared with the scalar TE soliton field alters this situation. As an example, consider the cases
solution. The new solution has only two nonzero compo-Q,=0 andQ,+#0. Note thatQ is the magneto-optic coeffi-
nents, instead of four, so it should be called a scalar solutiortient associated with the fundamental wave, @ydcharac-
But it is actually not a real scalar solution, because one of it¢erizes the harmonic. Figure 14 shows two numerical simu-
nonzero components is polarized alot(§y,) while the other lations of the interaction of a pure TE soliton, and a
nonzero components are polarized in ghelirection W,).  pseudoscalar soliton f@;=0.2 and—0.2, respectively. Fig-
Similarly, a crystal of the 52 or 3m class can support pure ure 14a) shows an attractive interaction, while Fig. (b}
™ (W, #0, V,#0, W, =0, V,=0) solitons, and another type shows a repulsive interaction. The results show that this may
of pseudoscalar soliton solutiof\W,#0, V,=0, W,=0, be a good way to control beam collapse and repulsion. In
V,#0). other words, upon switching the sign of the applied magnetic
Interaction between two pseudoscalar solitons is the saniigeld, a potential barrier is switched on between the two
as TE-TE interactions. In Fig. 10 the interaction between @eams. This may have a fundamental application in the mag-
scalar TE soliton and gpseudoscalasoliton is shown for a netooptic nonlinear optics. In Fig. 15 we plot the collapse
32 class crystal. The interaction shows repulsive behaviodistance of a pure TE and a pseudoscalar soliton, as it varies
Unlike the scalar TE-TE interaction, a wave compon@fjt ~ with Q. This figure shows how the magnetic field can op-
in this caseis generated, soon after the beam is launched, agrate. Basically, the reversal of the field creates a new pos-
shown in Fig. 11. This behavior can be used to make ibility for the collapse distanc®,>0, for the forward di-
polarization-generating device. Figure(d¢lshows that the rection, and the collapse distance increases as the field
generated/, field reaches a maximum at a certain distanceincreases from zer¢Q;=0). Eventually an exponential in-
from the input, and then starts to decay. To make use of mostrease sets in. FoQ,=0.18, a repulsive regime results,
of the generated,, the output must be near its maximum where the two beams continue, without hindrance, to exist,
point. This maximum point, however, is difficult to monitor. as shown in Fig. 1é). For the negative direction of field
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Q1<0, the magnetic field draws the two solitons in, by re-two pure TE solitons, and also the interaction of a TE soliton
ducing the collapse distance. These features alone suggesid a pseudoscalar soliton. The effect of an applied magnetic
some device possibility, and that an interesting range of spdield is also investigated, and interesting repulsive and col-

tial soliton experiments can be anticipated. lapsing regimes, for interacting solitons are produced by
switching the magnetic-field direction. It is concluded that
V. CONCLUSIONS planar waveguides usir)dz) crystals and magnetic interfaces

) . @ are going to be of great interest, because the potential appli-
Vectqr TE-TM waves in magneto-optic planay cations look extremely promising.
waveguides have a richer structure than scalar waves. The
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