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Vector spatial solitons influenced by magneto-optic effects in cascadable nonlinear media

A. D. Boardman and K. Xie
Photonics and Nonlinear Science Group, Joule Laboratory, Department of Physics, University of Salford,

Salford, M5 4WT, United Kingdom
~Received 10 May 1996!

The theory of vector spatial solitons in cascadable nonlinear media, bounded by magneto-optic material, is
established. The main work is preceded by a discussion of the fundamental-harmonic wave phenomenon and
four coupled equations for the system are established. A number of simulations are provided that illustrate both
the vector nature of a quadratically nonlinear film, bounded by magneto-optic media and the crucial role of the
magnetic field. It is demonstrated that the powerful polarization control exercised by the magnetic field
suggests a number of interesting applications.@S1063-651X~97!10901-1#

PACS number~s!: 42.65.Tg, 02.60.Lj, 42.60.Jf, 42.65.Jx
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I. INTRODUCTION

Second-order nonlinearity is, traditionally, associa
with second-harmonic generation@1#, and was not, until re-
cently, seen as a source of intensity-dependent phenom
The rejection of second-order materials as envelope, or
tial, soliton hosts appears to have been centered upon a l
phase-matching argument. This view has now chan
@2–12#, and the back-mixing, or down-mixing, which i
called cascading, of the second harmonic, with the fun
mental wave to create usable third-order nonlinearity in
form of an intensity-dependent refractive index, is open
up exciting prospects@13#. Featuring strongly among thes
are spatial soliton interactions@14–16#. Such excitations de
pend upon the competing roles of diffraction and nonline
ity and have already received some attention. The interac
between fundamental waves of angular frequencyv, with
linear wave numberkv , and harmonic waves, with angula
frequency 2v and linear wave numberk2v, can be under-
stood in terms of a balance between nonlinear and lin
phase mismatches. It is worthwhile to highlight this pri
ciple, using scalar waves for clarity of argument, therefo
before going on to investigate the more complex situat
involving vector waves and magnetooptic effects.

Suppose that the scalar electric fields associated witv
and 2v are Ev and E2v, respectively; then the frequency
domain amplitudes of the second-order nonlinear polar
tions @13#, in a material characterized by a susceptibility te
sorx i jk

(2), are

P~0!
NL5 1

2x~2!~0,v,2v!EvEv* , ~1a!

P~v!
NL 5 1

2x~2!~v;2v,2v!E2vEv* , ~1b!

P~2v!
NL 5 1

2x~2!~2v;v,v!EvEv . ~1c!

«0 is not included in these formulas, where thedc termP ~0!
NL

cannot act as a source term to generate waves, leaving
P ~v!
NL andP ~2v!

NL to act as drivers for interacting waves. Give
that this is the case, the~v,2v! interaction process for the
scalar cw waves under consideration here, that are propa
ing along thez axis, is governed by the well-known equ
tions @1#
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dEv

dz
52 iG1E2vEv* e

2 iDkz, ~2a!

dE2v

dz
52 iG2Ev

2eiDkz, ~2b!

where G25~v/2cn2v!x~2!~2v;v,v!, G15~v/4cnv!x~2!~v;2v,
2v!, andDk5k2v22kv is the linear phase mismatch. The
amplitudesEv(z), E2v(z) contain possible nonlinear phase
fv(z) andf2v(z), respectively. The amplitudes will there
fore be written asEv5Fve

2 ifv and E2v5F2ve
2 if2v,

where the dependence uponz is now implicit. From these
definitions, it is not difficult to establish the following equa
tions:

d2Fv

dz2
22S dfv

dz D 2Fv2
1

Fv
S dFv

dz D 21G1G2Fv
3

1DkS dfv

dz DFv50, ~3a!

2S dfv

dz D S dFv

dz D1Fv

d2fv

dz2
2Dk

dFv

dz
50, ~3b!

with similar ones being obtainable forF2v andf2v. Equa-
tions ~3! can now be made to reveal how the balance
tween thev and 2v waves is achieved. If the boundary co
dition is E2v~0!50, Ev~0!Þ0, then (dFv/dz)050 and
(dfv/dz)050, so that Eq.~3b! gives

F2S dfv

dz D1
Dk

2 G5
Dk

2

Fv
2 ~0!

Fv
2 ~z!

, ~4!

so that, for perfect linear phase matching, i.e.,Dk50, Fv

5sech(AG1G2z), fv5p/4, F2v5AG2 /G1 tanh(AG1G2z),
f2v50, and the interaction is not periodic. This is the clas
case in which the conversion ofv to 2v is 100%, and con-
version back tov does not occur. The point to be made he
is that there is nosteady-statecombination of~v,2v! waves.

For cw waves, a second type of boundary condition c
be created, however, by makingEvÞ0 andE2vÞ0, initially,
i.e., Ev(0)5Fv(0)e

2 ifv(0) andE2v(0)5F2v(0)e
2 if2v(0).
1899 © 1997 The American Physical Society
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In this case, a balance between thev and 2v waves can be
imposed by demanding thatdFv/dz50 and dF2v/dz50;
i.e., if Fv(z)5Fv(0) and F2v(z)5F2v(0) at z50, then
they will alwaysremainat that value. The conditions for thi
interesting stationary state are

2fv~z!2f2v~z!5Dkz, ~5a!

df2v

dz
5G2

Fv
2 ~0!

F2v~0!
, ~5b!

F2v~0!5
Dk6A~Dk!218G1G2Fv

2 ~0!

4G1
. ~5c!

Actually, these equations can also be found in the pape
Schiek@8#, but one difference is that he worked entirely
the frequency domain. Another difference is that Schiek d
cusses the problem in terms ofsuppressingthe 2v wave, by
using the boundary condition. While it is true that the boun
ary condition does eliminate the generation ofv→2v it is,
nevertheless, the case thatboth thev and 2v waves are still
present in the interaction. If the nonlinear phase shifts
defined asbv5dfv/dz and b2v5df2v/dz, then Eq.~5a!
shows that this second type of boundary condition creat
stationary state whenever the nonlinear phase mism
Db5b2v22bv exactly balancesthe linear phase mismatc
Dk5k2v22kv . A type-1 boundary condition is responsib
for second-harmonic generation, therefore, and type 2 is
sponsible for stationary state propagation. In other words,
waves in the two types of initial conditions, start different
and end up differently, in the cw case. The situation chan
for beams of finite size. For the type-1 boundary conditi
which is E2v~0!50 andEv~0!Þ0, two long-term behaviors
can be easily seen. IfEv~0! is below some threshold, the
E2v(z) is still generated, but bothEv(z) andE2v(z) radiate
away, due to diffraction. IfEv~0! is above some threshol
value, however, the energy switches back and forth betw
the fundamental and the harmonic a few times but eventu
energy is distributed betweenv and 2v to form a stationary,
spatial solitonlike beam. This is a balanced state. Of cou
E2v~0! can always be selected to prevent even initial rel
ations shedding unwanted energy, and a stationary state
be formed immediately. When this happens, again, it is
that 2v is suppressed, but that a combined~v,2v! solitonlike
beam is formed. In other words, it is the unwanted adju
ments associated with usingEv~0!Þ0, E2v~0!50 as initial
conditions, or not selectingEv~0!Þ0, E2v~0!Þ0 to give a
stationary state, immediately, that is avoided when Sch
refers to suppression. The above discussion is not com
from the same direction as the work of Schiek@8#, but it
should be recognized that his equations, in the end, con
the samemathematical content. Having now established
basics in terms ofv and 2v scalar waves that are balanced
form stationary solitonlike states, by compensatingexactly
for any linear phase mismatch with anonlinearphase mis-
match, it is important to consider vector solitons. This
done in this paper with an added effect gained from usin
waveguide that has a linear magnetooptic cladding and
strate.
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II. VECTOR AND MAGNETO-OPTIC FORMULATION

The dielectric medium is assumed to be dominated
second-order nonlinear polarizationsPNL~v! and PNL~2v!,
and that vector electric fields E~v!5„Ex(v),Ey(v)…,
E~2v!5„Ex(2v),Ey(2v)… are being propagated along thez
axis. The fundamental wave has an angular frequencyv, and
the harmonic wave has an angular frequency 2v. The pres-
ence oflinear magneto-optic material@17# creates, in addi-
tion, the polarizationsPM~v! andPM~2v!. If c is the velocity
if light in a vacuum, andn~v! andn~2v! are thezero mag-
netic field, zero nonlinearityand linear refractive indices at
the respectivev and 2v frequencies, then the general wav
equations are

“

2E~v!2“„¹•E~v!…1S v

c D 2n2~v!E~v!

1S v

c D 2PNL~v!1S v

c D 2PM~v!50, ~6a!

“

2E~2v!2“„“•E~2v!…1S 2v

c D 2n2~2v!E~2v!

1S 2v

c D 2PNL~2v!1S 2v

c D 2PM~2v!50. ~6b!

The x components of the nonlinear polarizations are

Px
NL~v!5 1

2 @2k1Ex* ~v!Ex~2v!22k2Ex* ~v!Ey~2v!

22k2Ey* ~v!Ex~2v!22k1Ey* ~v!Ey~2v!#,

~7a!

Px
NL~2v!5 1

2 @k1Ex
2~v!2k1Ey

2~v!22k2Ex~v!Ey~v!#,
~7b!

where the hexagonal and trigonal systems are covered
therefore, the crystal classes 6,̄ 6̄m2, 32, and 3m. The defi-
nitions ofk1 andk2 are

2k15xxxx
~2! ~v;2v,2v!52xxyy

~2! ~v;2v,2v!

52xxxx
~2! ~2v;v,v!522xxyy

~2! ~2v;v,v!, ~8a!

2k252xxyx
~2! ~v;2v,2v!52xxxy

~2! ~v;2v,2v!

52xxxy
~2! ~2v;v,v!. ~8b!

Similar expressions for they components ofPNL~v! and
PNL~2v! can also be found.

The system under investigation is shown in Fig. 1, a
consists of a film of quadratically nonlinear material which
bounded by a linear, magneto-optic, semi-infinite, cladd
and substrate. Guide confinement is in they direction and
self-focusing, leading to spatial solitonlike stationary stat
is along thex direction. The cladding and substrate are ma
netized, with an external magnetic field, along thez axis. In
this so-called longitudinal configuration the dielectric tens
of the cladding or substrate material is@18#, for v,
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«=M~v!5F «~v!

iQ~v!«~v!

0

2 iQ~v!«~v!

«~v!

0

0
0

«~v!
G , ~9!

and «=M~2v! has the same form.Q~v! is a frequency-
dependent magneto-optic coefficient which is induced by
applied magnetic field.

The polarization components, arising because of
magneto-optic nature of the substrate or cladding, are@17#

Px
M~v!52 iQ~v!«~v!Ey~v!,

Py
M~v!5 iQ~v!«~v!Ex~v!, ~10a!

Px
M~2v!52 iQ~2v!«~2v!Ey~2v!,

Py
M~2v!5 iQ~2v!«~2v!Ex~2v!, ~10b!

where it should be emphasized that the magneto-optic c
pling parameter does, in principle, depend upon frequen
For many materials, the difference betweenQ~v! andQ~2v!
will be slight, however. In the kind of waveguide that
typical for integrated optics the guiding is weak so th
“„“•E~v!…>0, “„“•E~2v!…'0.

Suppose now thataverage linear guiding~zero magnetic
field! wave numbers kv5A(kxv)21(ky

v)2/2 and k2v

5A(kx2v)21(ky
2v)2/2 are introduced, where kv

Þv/cA«(v) and k2vÞv/cA«(2v). The field components
Ex,y~v! andEx,y~2v! can then be expressed in the followin
separable, form:

Ex,y~v!5Gx,y
v Ax,y

v ~y!Fx,y~x,z!eik
vz ~11a!

Ex,y~2v!5Gx,y
2vAx,y

2v~y! f x,y~x,z!eik
2vz, ~11b!

where the normalization constants are

FIG. 1. The waveguide structure.H0 is the applied magnetic
field needed to activate the magneto-optical material. Both the c
ding and the substrate are semi-infinite.
e

e
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~Gx
v!25

1

*~Ax
v!2dy

>~Gy
v!25Gv

2 ,

~Gx
2v!25

1

*~Ax
2v!2dy

>~Gy
2v!25G2v

2 ~12!

on the grounds that the cross-sectional modal areas,
sented byA x

v,2v andA y
v,2v, are very similar. The substitu

tion of Eq. ~11! into Eq. ~6a!, for example, gives

2ikvGvAx
v

]Fx

]z
1GvAx

v
]2Fx

]x2
1Gv

]2Ax
v

]y2
Fx

1F S v

c D 2nx2~v!2~kv!2GGvAx
vFx50, ~13!

where

nx
2~v!5@Px

NL~v!1Px
M~v!#/Ex~v!1«~v! ~14!

in which «~v!5n2~v!, and it should be recalled thatn~v! is
the refractive index in the absence of both magnetic field
nonlinearity. Equation~13! can be treated by the method o
separation, which involves splitting, through a separat
constantk̄ x

v into the two forms

2i
kv

Fx

]Fx

]z
1
1

Fx

]2Fx

]x2
1@~kx

v!22~kv!2#1@~ k̄x
v!22~kx

v!2#50,

~15a!

]2Ax
v

]y2
1F S v

c D 2nx2~v!2~ k̄x
v!2GAx

v50. ~15b!

The second equation is the nonlinear eigenmode equatio
will be used to generate (k̄ x

v)22(k x
v)2, which is needed for

Eq. ~15a!. In the absence of nonlinearity and magnetic fie
k̄ x

v5k x
v, hence

Fx@~ k̄x
v!22~kx

v!2#5
v2

c2
*@nx

2~v!2«~v!#~Ax
v!2dy

*~Ax
v!2dy

Fx

5S v

c D 2@ k̄1Fx* f x2k̄2Fx* f y

2k̄2Fy* f x2k̄1Fy* f y#

3ei @k
2v22kv#z2 i S v

c D 2Q~v!«~v!Fy

~16!

whereA y
v>A x

v, and

k̄15G2v

*Ax
2v~Ax

v!2dy

*~Ax
v!2dy

k1>G2v

*Ay
2v~Ax

v!2dy

*~Ax
v!2dy

k1

'
Gv
2

G2v

*~Ax
v!2Ax

2vdy

*~Ax
2v!2dy

k1>
Gv
2

G2v

*~Ay
v!2Ax

2vdy

*~Ax
2v!2dy

k1 ,

~17a!

d-



-
h

1902 55A. D. BOARDMAN AND K. XIE
k̄25
Gv
2

G2v

*Ax
vAy

vAx
2vdy

*~Ax
2v!2dy

k2>G2v

*Ay
2v~Ax

v!2dy

*~Ax
v!2dy

k2

>G2v

*Ax
2v~Ax

v!2dy

*~Ax
v!2dy

k2 , ~17b!

Q~v!«~v!5
*Q~v!«~v!~Ax

v!2dy

*~Ax
v!2dy

,

~17c!

Q~2v!«~2v!5
*Q~2v!«~2v!~Ax

2v!2dy

*~Ax
2v!2dy

.

Equation~15a! becomes, therefore,

2ikv
]Fx

]z
1

]2Fx

]x2
1@~kx

v!22~kv!2#Fx

2 i S v

c D 2Q~v!«~v!Fy1S v

c D 2@ k̄1Fx* f x2k̄2Fx* f y

2k̄2Fy* f x2k̄1Fy* f y#e
i ~k2v22kv!z50. ~18!

If we now make the further transformations

FIG. 2. The potential functionV(pr ,qr) for m250 andn50, ~a!
m150. ~b! m151.
FIG. 3. Solutionspr ~dashed! andqr ~solid! as a function ofx.
~a! Example of a spurious~nonsensible! solution. ~b! Symmetric
solitonlike solution.~c! Multipeaked solitonlike solution.m151.0,
m250, andn50.

FIG. 4. Total energy ofcombinedTE and TM modes as a func
tion of ~1/n! m152 and m250. The solutions associated wit
branches 1, 2, and 3 are also shown.
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55 1903VECTOR SPATIAL SOLITONS INFLUENCED BY . . .
Fx5
Wx

&
exp~ ib1z!, Fy5

Wy

&
exp~ ib1z!, ~19a!

f x5Vxexp~ ib2z!, f y5Vyexp~ ib2z!, ~19b!

whereb1 andb2 are nonlinear phase changes. Only solito
like solutions are to be investigated here, so the cho
k2v22kv1b222b150 is made. After makingb1z→z and
A2kvb1x→x, the following set of four coupled equation
emerge:

i
]Wx

]z
1

]2Wx

]x2
1n1Wx2Wx2 iQ1Wy1k̄1~Wx*Vx2Wy*Vy!

2k̄2~Wx*Vy1Wy*Vx!50, ~20a!

i
]Wy

]z
1

]2Wy

]x2
2n1Wy2Wy1 iQ1Wx1k̄2~Wy*Vy2Wx*Vx!

2k̄1~Wy*Vx1Wx*Vy!50, ~20b!

2ia
]Vx

]z
1

]2Vx

]x2
1n2Vx2abVx2 iQ2Vy1k̄1~Wx

22Wy
2!

22k̄2WxWy50, ~20c!

2ia
]Vy

]z
1

]2Vy

]x2
2n2Vy2abVy1 iQ2Vx1k̄2~Wy

22Wx
2!

22k̄1WxWy50. ~20d!

Note that equations~19! also use the transformations

FIG. 5. Total energy ofcombinedTE and TM modes as a func
tion of m2. m152 andn50. The mode shapes for branches 1–4
also shown.
-
e

S v

c D 2 Wx,y

2kvb1
→Wx,y , S v

c D 2 Vx,y

2kvb1
→Vx,y

and the definitions

n1,25
~kx

v,2v!22~ky
v,2v!2

4kvb1
, Q15S v

c D 2 Q~v!«~v!

2kvb1
,

Q25S 2v

c D 2 Q~2v!«~2v!

2kvb1
, a5

k2v

2kv , b52
b2

b1
,

wheren1,2 are birefringence parameters, andQ1,2 are magne-
tooptic parameters.

The coupled equations~20! are not completely integrable
but they do have, at least, three constants of motion. Th
are the following:

Effective mass~total energy!

M52
1

A2p
E @ 1

2 uWxu21auVxu21
1
2 uWyu21auVyu2#dx.

~21a!

Momentum

P5
i

A2p
E FWx

]Wx*

]x
2Wx*

]Wx

]x
1aVx

]Vx*

]x
2aVx*

]Vx

]x

1Wy

]Wy*

]x
2Wy*

]Wy

]x
1aVy

]Vy*

]x
2aVy*

]Vy

]x Gdx.
~21b!

e

FIG. 6. Total energy of combined TE and TM modes as a fu
tion of m2 for a number of stationary states withm1522 andn50.
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FIG. 7. Evolution from the TE input stateWy5Vy50 and
Wx5Vx5

3
2 sech

2~x/2!. ~a! 6̄m2/3m crystal class withk150 and
k251, ~b! 32 crystal class withk151 andk250.
FIG. 8. Collision between two, initially, pure, in-phase, TE soli-
tons with equal amplitudes, for a 32 crystal class.~a! Wx compo-
nent. ~b! Vx component. TheWy andVy components are always
zero, everywhere.
Hamiltonian

H5S 2p D 1/2E FU]Wx

]x U21U]Wy

]x U21 1

2 U]Vx

]x U
2

1
1

2 U]Vy

]x U
2

2n1uWxu21n1uWyu22
n2
2

uVxu21
n2
2

uVyu21uWxu21uWyu21
ab

2
uVxu2

1
ab

2
uVyu22 iQ1~WxWy*2Wx*Wy!2

i

2
Q2~VxVy*2Vx*Vy!2

k1

2
~Wx*

2Vx1Wx
2Vx*22Wx*Wy*Vy2Wy*

2Vx2Wy
2Vx*

22WxWyVy* !2
k2

2
~Wy*

2Vy1Wy
2Vy*22Wy*Wx*Vx2Wx*

2Vy2Wx
2Vy*22WyWxVx* !G . ~21c!
f
s

III. CASCADED LIMIT

In the cascaded limit,]Vx,y/]z and]2Vx,y/]x
2 are negli-

gible, so Eqs.~20c! and ~20d! become

~ab2n2!Vx1 iQ2Vx5k1~Wx
22Wy

2!22k2WxWy ,

2 iQ2Vx1~ab1n2!Vy5k2~Wy
22Wx

2!22k1WxWy

which have the solutions

Vx5Dx /D, Vy5Dy /D, D5a2b22n2
22Q2

2,
and Dx,y are the usual 232 determinants. The substitution o
Vx andVy into Eqs.~20a! and~20b! gives coupled equation
for Wx andWy . For example,

i
]Wx

]z
1

]2Wx

]x2
12nWx12uWxu2Wx22Wx*Wy

2

12m1uWyu2Wx12m2~Wx
2Wy*2uWyu2Wy12uWxu2Wy!

2 iQ1Wy2 iQ2~Wx
2Wy*2uWyu2Wy22uWxu2Wy!50,

~22!

wheren5n1/2,
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m152
~k1

21k2
2!ab2~k1

22k2
2!n2

~k1
21k2

2!ab1~k1
22k2

2!n2
,

m25
22k1k2n2

~k1
21k2

2!ab1~k1
22k2

2!n2
,

2~k1
21k2

2!Q2

~k1
21k2

2!ab1~k1
22k2

2!n2
→Q2 ,

and

FIG. 9. Collapse distance, as a function of total energy for
interaction between two, initially, scalar solitons. The length curv
associated with the stable and unstable branches of the total en
curves are indicated, together with the fundamental and harm
wave content.
 F S k1

21k2
2

2D
ab1

k1
22k2

2

2D
n2D 1/2GWx,y→Wx,yexp~2 iz!.

Stationary soliton solutions, in the form

Wx5~pr1 ipi !exp~ i2lz!,
~23!

Wy5~qr1 iqi !exp~ i2lz!,

can now be looked for. Solutions~23!, when used in Eq.
~22!, and the similar equation forWy , give four coupled,
ordinary, differential equations for the real and imagina
parts of the TE and TM field component amplitudes.

The numerical analysis begins with a simpler case,
which m250. For a pure TE soliton solution,pi5qr5qi50
and pr5r sech(rx), where r252~l2n!. This recovers the
scalar case. Alsopr5qr5qi50 andpi5r sech(rx), where

n
,
rgy
ic

FIG. 10. Contour plot showing the cross section of the evolut
of the interaction between an, initially,scalar TE soliton and a
pseudoscalar soliton for a 32 crystal class.k151, k250,
Q15Q250, andn15n250.
m

FIG. 11. Evolution of the four
components of Fig. 10, showing
that the wave componentVy is
generated, shortly after the bea
is launched.~a! Vx component.~b!
Wx component.~c! Vy component.
~d! Wy component.k151, k250,
Q15Q250, andn15n250.
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r is the same as it is in the previous case. The solutio
however, have ap/2 phase shift with respect to each othe
By the same logic,qr5r sech(rx), with r252~l1n! if
pr5pi5qi50, or qi5r sech(rx), if pr5pi5qr50.

The above solutions are scalar, and cease to exist ifm2Þ0.
The coupled equations withm2Þ0 havevectorsolutions, and
it can be assumed that the solutions are real, i.e.,pi5qi50
always. For example, the coupled equations can be redu
via the transformationsAlx→x, n/l→n, (1/Al)pr→pr ,
and (1/Al)qr→qr , to

p̈r22~12n!pr12~pr
22qr

2!pr12m1qr
2pr

12m2~3pr
22qr

2!qr50, ~24a!

q̈r22~11n!qr12~qr
22pr

2!qr12m1pr
2qr

22m2~3qr
22pr

2!pr50, ~24b!

wherep̈r5d2pr /dx
2 andq̈r5d2qr /dx

2. These equations ar
integrable form250 andm152, but, for other values, numeri

FIG. 12. Evolution of the interaction between two beams forc
initially, to be at an angleu to each other. One beam sets out a
pure TE soliton@onlyWxÞ0,VxÞ0# and the other beam sets out
a pseudoscalar soliton@onlyWyÞ0, VxÞ0#. The crystal class is 32
sok151 andk250. AlsoQ15Q250 andn15n250.
s,
.

ed,

cal simulations have to be generated. The Hamiltonian of
coupled equations~24a! and ~24b! is

H5 1
2 ~ ṗr

21q̇r
2!2~pr

21qr
2!1n~pr

22qr
2!1 1

2 ~pr
22qr

2!2

1m1pr
2qr

212m2~pr
22qr

2!prqr , ~25!

and the potential energy is

V~pr ,qr !52~pr
21qr

2!1n~pr
22qr

2!1 1
2 ~pr

22qr
2!2

1m1pr
2qr

212m2~pr
22qr

2!prqr . ~26!

Figure 2 shows the forms of the potential functionV(pr ,qr),
for various values ofm1, m2, andn. The case form15m250.0
andn50.0, is shown in Fig. 2~a!, in which it can be seen tha
the trajectory of a ‘‘particle’’ on the potential surface evolv
down a steep slope, and escapes to an infinity ofqr andpr .
No sensible solution is possible, therefore, for this syste
For m151.0,m250, andn50 @Fig. 2~b!#, however, sensible
solutions are likely to occur, since any point on the surfa
that can evolve will remain at finitepr andqr values. Imme-
diately, this kind of analysis shows that regular solutions
possible forpr andqr . Regular solutions can also exist fo
m151.0, and small values ofm2 andn, since the potential is
not modified so much that the dippedlike structure vanish

Equations~24! are ordinary differential equations and ca
be solved, numerically, with a technique known as theshoot-
ing method@19#. Solutions may appear during the numeric
analysis, which do not make sense, but these can be reje
by using an iterative process to obtain convergence to
acceptable soliton result. Figure 3~a! shows such a nonsen
sible solution, but, in the class of meaningful solutions, tw
types are obtained, namely symmetric, and antisymme
Figure 3~b! shows stationary symmetric solutions for bothpr
and qr . Clearly, bothpr and qr are solitonlike solutions.
Other solitonlike solutions also exist, but these are mu
peaked, as shown in Fig. 3~c!. Thepr solution~dashed line!

,

n

FIG. 13. ~a! Vx , ~b! Wx , ~c!
Vy , and~d! Wy components of the
scalar-pseudoscalar interactio
shown in Fig. 12. The peak ofVy

is located at the collision point is
clearly seen in this set of figures.
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is similar, in this case, to a fundamental soliton, except t
there is a slight bump at the top. On the other hand, theqr
solution ~solid line! has negative values, and is multipeak
when the absolute value of the field is used. It is interest
that many more stationary state solutions exist.

The total energy of the two TE and TM modes, in t
cascaded limit, as it changes with the parametersm1, m2 and
n, but withQ150 andQ250, will now be investigated. The
total energy is defined as E5(2/An)*@(Alpr)

2

1(Alqr)
2#d(x/Al)5(2/An)*(p r

21q r
2)dx, and Fig. 4

shows that the total energy of the combined TE and T
modes is a function of the different initial profiles used. T
parameters involved arem152 and m250. In Fig. 4 each
number represents a typical curve for a particular solution
equations~25! which were found using theshooting tech-
nique @19#. Curves~1! and ~2! coincide for largen and split
into two, as the birefringence parameter is reduced. The p
TM mode, represented by curve~2!, has more energy, for th
same birefringence parameter, than the mode of curve~3!.
Figure 5 shows what happens when them2 parameter is var-
ied, for the single-peaked structure. Curves~1! and~2! are in
the same region, since they represent the same statio
profiles, except that the TE and TM modes have be
switched around. For branches~1! and ~2!, branch~1! has a
higher total energy than~2!. They do coincide, however, fo
a particular value ofm2, whenm2 is about20.035, but, as
um2u is increased, branch~1! increases in total energy
whereas branch~2! decreases. Branches~3! and~4! of Fig. 5
behave similarly, where branch~4! decreases in value, whe
the larger stationary solution is the TE mode, as with bra
~1!. Branch~3! increases in value, and the larger of the s
tionary solutions is TM. Here branches~3! and ~4! do not
meet like ~1! and ~2!. When m250, branches~3! and ~4!
reduce to pure TM and TE solutions, respectively. Figur
shows the total-energy variations, versusm2, for the single-
peaked structure. It also shows the asymmetric station
solutions, given by branches~1! and ~3!.

IV. NUMERICAL ANALYSIS OF THE FOUR
COUPLED EQUATIONS

In Sec. III, the four coupled equations given by Eq.~20!
were reduced to two, within the cascaded limit, and the s
lar and vector solitons were examined as functions ofn, m1,
and m2. Here some numerical computations of the fo
coupled equations are presented.

The numerical simulations have been carried out fo
quadratically nonlinear material sandwiched between a se
infinite, magneto-optic cladding and substrate. Since yttri
iron garnet ~YIG! is transparent for 1.1–1.5-mm wave-
lengths, this material is selected to illustrate the effects. I
a well-known magnetic material, backed by a mature te
nology that has large enough off-diagonal elements in
dielectric tensor to produce easily measurable magneto-o
effects. A typical diffraction length isLD>2.2 mm. Typical
beam widthsD0>8.5 mm, and magneto-optic paramet
Q;1024 are also assumed. It is well-known that YIG can
saturated with a magnetic field;1750 G so that may be
assumed. Also, the nonlinear film thickness is the order o
mm. To strike a note of caution, in principle,Q is a function
of frequency, leading toQ1 andQ2, but it may also be a
t
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constant, or modulated with some function. For example
modulation sin~px/2!/usin~px/2!u creates a periodic squar
function, which is perfectly possible from a technical poi
of view. The propagations will be allowed to proceed fro
z50 to z>11 cm and the transverse computational wind
is 268 mm<x<68 mm.

For a certain crystal symmetry group, in the absence o
applied magnetic field, only solitons with a particular pola
ization state can be supported. For example,k150, in a crys-

tal belonging to the 6̄m2, or 3m class. Pure TM~WyÞ0,
VyÞ0! solitons can then propagate, while pure TE solito
~WxÞ0, VxÞ0! cannot. On the other hand, in a 32 cla
crystal,k250. In this case, pure TE solitons can propaga
but then pure TM solitons cannot. In a 6c̄lass material, nei-
ther pure TE nor TM can propagate. In this case, a vec
type of soliton, which is a mixture of TE and TM compo
nents, forms theintrinsic solution of the coupled equations

Figure 7 shows the propagation of a pure TE soliton
different types of crystal. In the casek150, the field ampli-
tude is normalized withk2, i.e., k2Wx,y→Wx,y and
k2Vx,y→Vx,y . In contrast, ifk250, the field is normalized
with k1. n15n250, Q15Q250, andab51 are used here
andWx5Vx5

3
2 sech

2~x/2! andWy5Vy50 are used at the
input. Figures 7~a! and 7~b! show a pure TE soliton propa
gating in a 6̄m2/3m class crystal and 32 class crystal, respe
tively. For the reason mentioned above, solitons in Fig. 7~a!
start radiating and decay soon after they are launched
similar situation arises for a pure TM soliton, but for th
solution, instead of decaying in a 6m̄2/3m crystal, it decays
in a 32 class crystal.

Figure 8 shows a collision between,initially , two equal
TE solitons in a 32 class crystal. Figures 8~a!, 8~b!, 8~c!, and
8~d! display in theWx , Vx ,Wy , andVy components, respec
tively. It is shown, in Figs. 8~c! and 8~d! that no TM com-
ponent (Wy ,Vy) is generated, in the collision. The collisio
is, nevertheless, inelastic, as the reduction in the oscilla
period, and the small amount of radiation, indicate. This
elastic property of the collision originates from the fact th
the coupled equations~20! do not have multisoliton solu-
tions.

It is important to study interaction lengths, so, for th
purpose of this calculation, the concept ofcollapse lengthis
used. This is the distance through which the beams com
be overlapped by half their beam width. Using this defi
tion, it can be seen in Fig. 9 that the collapse phenomeno
not as simple as it appears in Fig. 8. There are two branc
to the collapse distance—total energy curves correspon
to stable and unstable states of the scalar soliton solutio

The stability of the scalar soliton solution of Eqs.~20!, is
discussed in@13#. One point that should be noted here, ho
ever, is that, if the growth rate of the unstable branch is v
small, two solitons can collide, well before breakdown o
curs. In such a case, a collapse length can still be defined
the total energy increases, the growth rate of the unsta
branch~lower branch in Fig. 9! increases, until the soliton
lose their identity, before they meet each other. This is wh
the lower branch of Fig. 9 stops. Its upper branch will go
increasing forever. If the growth rate of the unstable bran
is still rather small, the soliton will, nevertheless, radiate e
ergy, immediately after it is launched. When a soliton e
counters this radiation, it can ‘‘see’’ the existence of t
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other soliton, and their interaction is then enhanced. T
radiation must be responsible for the shorter collapse len
of the unstable solitons. For the 32 class~k250!, a crystal
cannot only support a pure scalar TE soliton~WxÞ0, VxÞ0,
Wy50, Vy50!, it can also support a pseudoscalar solit
~Wx50, VxÞ0,WyÞ0, Vy50!. If n15n250 andab51, this
pseudoscalar soliton solution isWx5Vy50 andWy52Vx5
3
2 sech

2~x/2!. The pure scalar TE soliton, in this case,
Wy5Vy50, Wx5Vx5

3
2 sech

2~x/2!. The name ‘‘pseudosca
lar’’ is clear when it is compared with the scalar TE solito
solution. The new solution has only two nonzero comp
nents, instead of four, so it should be called a scalar solut
But it is actually not a real scalar solution, because one o
nonzero components is polarized alongx(Vx) while the other
nonzero components are polarized in they direction (Wy).
Similarly, a crystal of the 6̄m2 or 3m class can support pur
TM ~WyÞ0,VyÞ0,Wx50,Vx50! solitons, and another typ
of pseudoscalar soliton solution~WxÞ0, Vx50, Wy50,
VyÞ0!.

Interaction between two pseudoscalar solitons is the s
as TE-TE interactions. In Fig. 10 the interaction betwee
scalarTE soliton and apseudoscalarsoliton is shown for a
32 class crystal. The interaction shows repulsive behav
Unlike the scalar TE-TE interaction, a wave component~Vy
in this case! is generated, soon after the beam is launched
shown in Fig. 11. This behavior can be used to mak
polarization-generating device. Figure 11~c! shows that the
generatedVy field reaches a maximum at a certain distan
from the input, and then starts to decay. To make use of m
of the generatedVy , the output must be near its maximu
point. This maximum point, however, is difficult to monito

FIG. 14. Magneto-optic interaction of an, initially, TE solito
and a pseudoscalar soliton forQ1Þ0 andQ250. ~a! Q150.2, ~b!
Q1520.2.
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One way to overcome this difficulty is to force the tw
beams to collide, by giving them an initial angle. Then t
point where the generatedVy field reaches its maximum is
always the point where the two beams collide. Figure
shows an example of this forced collision. There are t
beams, and the one on the left is a pure TE soliton with o
Wx andVx components. The one on the right is a pseud
calar soliton, and has onlyWy andVx components. Initially,
they propagate at an angle to each other. Figures 13~a!–13~d!
show itsVx , Wx , Vy , Wy components, respectively. Figur
13~a! shows theVx collision and Fig. 13~d! shows the gen-
eration ofVx , with theVy component being, initially, zero
As the beams pass through each other, energy is fed
from other components, and it reaches its peak in the vicin
of the expected collision point, as shown in Fig. 13~c!. Fig-
ures 13~b! and 13~d! show theWx andWy components, and
it can be seen that the two sets of beams do not actu
collide, but bounce off each other. In fact, each takes a sl
shadow of its partner with it.

It is now an important question to see how the magne
field alters this situation. As an example, consider the ca
Q250 andQ1Þ0. Note thatQ is the magneto-optic coeffi
cient associated with the fundamental wave, andQ2 charac-
terizes the harmonic. Figure 14 shows two numerical sim
lations of the interaction of a pure TE soliton, and
pseudoscalar soliton forQ150.2 and20.2, respectively. Fig-
ure 14~a! shows an attractive interaction, while Fig. 14~b!
shows a repulsive interaction. The results show that this m
be a good way to control beam collapse and repulsion
other words, upon switching the sign of the applied magne
field, a potential barrier is switched on between the t
beams. This may have a fundamental application in the m
netooptic nonlinear optics. In Fig. 15 we plot the collap
distance of a pure TE and a pseudoscalar soliton, as it va
with Q1. This figure shows how the magnetic field can o
erate. Basically, the reversal of the field creates a new p
sibility for the collapse distanceQ1.0, for the forward di-
rection, and the collapse distance increases as the
increases from zero~Q150!. Eventually an exponential in
crease sets in. ForQ1>0.18, a repulsive regime results
where the two beams continue, without hindrance, to ex
as shown in Fig. 14~b!. For the negative direction of field

FIG. 15. Collapse distance for the interaction between an,
tially, TE soliton and a pseudoscalar soliton, as a function of
magnetoptic parameterQ1. Reversal of the applied magnetic fiel
occurs whenQ1 changes sign.
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Q1,0, the magnetic field draws the two solitons in, by r
ducing the collapse distance. These features alone sug
some device possibility, and that an interesting range of s
tial soliton experiments can be anticipated.

V. CONCLUSIONS

Vector TE-TM waves in magneto-optic planarx~2!

waveguides have a richer structure than scalar waves.
basic theory for them is derived here, and is expressed in
form of four coupled equations. In this paper, the first deta
concern the cascaded limit, when the system condense
two coupled equations for the TE and TM waves. Differe
scalar and vector soliton solutions are obtained. The f
coupled equations and then used to study the interaction
an
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two pure TE solitons, and also the interaction of a TE solit
and a pseudoscalar soliton. The effect of an applied magn
field is also investigated, and interesting repulsive and c
lapsing regimes, for interacting solitons are produced
switching the magnetic-field direction. It is concluded th
planar waveguides usingx~2! crystals and magnetic interface
are going to be of great interest, because the potential ap
cations look extremely promising.
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